Nolan Tsuchiya, P.E., Ph.D.

Education

- June 2015 **Doctor of Philosophy, Mechanical Engineering**, *University of California, Los Angeles*. Major Field: Dynamic Systems and Control
- Dec 2012 Master of Science, Mechanical Engineering, University of California, Los Angeles.
- May 2006 Bachelor of Science, Mechanical Engineering, University of California, Berkeley.

License

May 2009 Professional Engineer (P.E.) license in Mechanical Engineering, California

Awards

May 2016 Pi Tau Sigma, mechanical engineering honors society, *Purple Shaft* Outstanding Professor Award (2015-2016)

Teaching Experience

- Fall 2015 Assistant Professor, Cal Poly Pomona, Mechanical Engineering.
 - Present Teaching a range of courses from introductory seminar to senior-level. ME100L, ME232A, ME340, ME439/L.
 - Managing all additional non-teaching related aspects of full-time faculty status including:
 - Advising several senior project students
 - Advising CPP ASHRAE Club
 - Advising CPP SpaceX Hyperloop design competition
 - Participating in department activities and serving on Graduate Studies and Assessment committees
 - ME program coordinator for COE Project Symposium
 - Conducting research in the field of Dynamic Systems and Control
 - Assisting in managing ME Online, online directory of video tutorials / instructional videos

Winter 2014, Lecturer, Cal Poly Pomona, ME439/L: CONTROL OF MECHANICAL SYSTEMS.

- Fall 2014 Lectured senior-level laboratory course in dynamic systems and feedback control principles
 - Managed all aspects of teaching an advanced college-level course. Responsibilities included:
 - Developing course curriculum and lecture notes
 - Writing and grading all homework, laboratory assignments, and exams
 - Organizing and supervising lab demonstration days during which students presented their projects and discussed relevant control theory learned in lecture
 - Holding office hours to help students one-on-one

2012 - 2013 Teaching Associate, UCLA, MAE171A: FEEDBACK AND CONTROL SYSTEMS.

- Taught principles of feedback control, control systems design, and system stability during weekly 2-hour discussion sections
- o Conducted weekly office hours to answer students' questions, developed small-group teaching skills
- Wrote assignments and exams by collaborating with the professor

Research Experience

2011-2015 Graduate Student Researcher, UCLA Beam Control Laboratory.

• Adaptive Control of Laser Beam Jitter

- Develop and apply novel adaptive Jitter control algorithms to experimental applications
- Implement a receding-horizon (model-predictive) adaptive lattice filter control scheme to a laboratory laser beam disturbance rejection experiment
- Built experimental laser beam steering experiment which features a laser source, two dual-axis fast steering mirrors, an optical position sensor, and all required optics. Helped lab members set up similar experiments. Gained proficiency setting up complex laboratory experiments
- Utilize xPC Target real-time testing environment within the MATLAB / Simulink program

• System Identification

- Apply adaptive filtering algorithm to identify plant models in real time in the presence of complex, broadband disturbances
- Novel system identification technique allows adaptive control schemes to run in real time without requiring a plant model a priori

2012-2013 Graduate Student Researcher, UCLA Mechatronics and Control Laboratory.

• Adaptive Disturbance Rejection on Magnetic Bearing

- Collaborated with graduate students in the UCLA Mechatronics and Control Laboratory on a magneticallylevitated bearing experiment (Magnetic Bearing)
- Set up a magnetic bearing experiment with a mechanism to add a broadband disturbance
- Implemented multi-channel adaptive control algorithm to reject bearing disturbances in real time

Industry Experience

2009-2010 Applications Engineer, Syserco Energy Management, Inc, Fremont, California.

- Designed direct digital control (DDC) systems for mechanical HVAC systems in Northern California high-tech, biotech, and corporate office buildings
- Composed system sequence of operations for systems with emphasis on energy efficiency
- Collaborated with project managers to produce accurate engineering submittals

2007-2009 Mechanical Engineer, ACCO Engineered Systems, San Leandro, California.

- Worked with project managers to design HVAC systems in a fast-paced design build environment.
- Developed coordination skills required to produce deliverables on schedule
- o Contributed to all job phases from initial drawings, to field coordination, to final design
- Daily work included: building load calculations, equipment selection, duct/pipe sizing and layout, CAD drafting, LEED documentation, field coordination with other trades, maintaining communication between project managers, architects, and subcontractors

Publications / Works in Progress

K. Anderson, N. Tsuchiya, and T. Gross, "Using opto-22 programmable automatic controllers (pacs) to teach industrial mechatronics," in *CAINE*, (*Accepted*), 2016.

N. Tsuchiya, C. Kang, J. S. Gibson, and T.-C. Tsao, "Adaptive control of a coupled-channel magnetically levitated bearing experiment," in *IEEE Transactions Control Systems Technology*, *(Editting)*, 2016.

C. Kang, N. Tsuchiya, J. S. Gibson, and T.-C. Tsao, "Harmonic and stochastic disturbance rejection on an active magnetic bearing-rotor system," (*In Progress*), 2016.

N. Tsuchiya, J. S. Gibson, T.-C. Tsao, and M. Verhaegen, "Receding-horizon adaptive control of laser beam jitter," in *IEEE Transactions on Mechatronics*, April 2015.

C. Kang, N. Tsuchiya, J. S. Gibson, and T.-C. Tsao, "Modeling and control of magnetic bearings," *UCLA Tech Forum, Poster Session*, February 2014.

N. Tsuchiya, C. Kang, J. S. Gibson, and T.-C. Tsao, "Receding-horizon adaptive control of a magnetic levitation bearing," in *IFAC American Control Conference*, Chicago, IL, *(Not Accepted)*, December 2014.

N. Tsuchiya, J. S. Gibson, T.-C. Tsao, and M. Verhaegen, "Control of jitter in a laser beam experiment by receding-horizon adaptive control," in *IFAC Symposium on Mechatronic Systems*, Hangzhou, China, April 2013.